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LElTER TO THE EDITOR 

Bipartitioning of random graphs of fixed extensive valence 

Werner Wietheget and David Sherrington 
Physics Department, Imperial College, London SW7 282, U K  

Received 7 August 1986, in final form 14 October 1986 

Abstract. The procedure of Fu and Anderson for the application of statistical mechanics 
to the problem of bipartitioning random graphs is extended to graphs of fixed extensive 
valence. The cost function is shown to be independent of whether the valence is locally 
or globally constrained. 

In a recent paper Fu and Anderson (1986, hereafter referred to as FA) have applied 
techniques of the statistical mechanics of random systems to graph partitioning (Palmer 
1985). In the class of problems they considered, each pair in a set of 2 N  vertices is 
connected with probability p and the problem is to divide the 2 N  vertices into two 
sets VI and V, of N vertices each in such a way that the number of links between the 
two sets is minimal. FA showed that for an N-independent probability ( p  = O(1)) the 
bipartitioning problem bears close resemblance to the SK (Sherrington-Kirkpatrick) 
spin glass. In this letter we study a slightly modified version of their model in which 
the connectivity is fixed at every vertex (and not just on the average as in FA) and we 
show that for the case of extensive connectivity it has the same thermodynamic limit. 

Solving the bipartitioning problem is equivalent to finding the ground state of the 
Hamiltonian 

while satisfying the additional condition 

c s, = 0. 
j 

Sj takes the values *l and ajr is 1 if the two vertices j and 1 are connected and 0 
otherwise. FA used the distribution of the ajl 

1 ./=Io with probability 

where p is independent of N ( p  = O( 1)). Here, we impose a stricter condition on the 
ajl by demanding 

C ( a j / - p ) = O  
/ ( + I )  

for each j .  Other than this restriction the ujl are randomly 1 or 0. 

t On leave from: lnstitut fur Theoretische Physik, Universitat Koln, D-5000 Koln 41, West Germany. 

(4) 
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Equations (2) and (4) can be taken into account by adding terms to the effective 
Hamiltonian to give 

Equations (2) and (4) are then satisfied by taking the limits J1 + 03, J2 + 03. 

Following FA (to whom we refer for further details) we use the replica trick (Edwards 
and Anderson 1975, Sherrington and Kirkpatrick 1975) to find the free energy averaged 
over the distribution of the ujl, the cost function being the zero temperature limit. 

The J1 term is linearised by a Hubbard-Stratonovich transformation and we obtain 

[. . .I,, denotes the average over the ujr, the Sj. carry a replica index and Trs is the 
trace over the states of the 2Nm ‘spins’. Equation (6) replaces (3.3) in FA and reduces 
to that equation if all uj are set equal to zero. 

The logarithm of the last product in (6) can be expanded to give 

In (7), setting uj = 0 again reduces this to the case studied by FA (3.5) where the 
last square does not depend on m. In general, this m dependence considerably increases 
the difficulty of the problem and we look for a suitable approximation to simplify (7). 

Until now, we have not discussed any possible N dependence of the coupling 
constants. FA argued that J has to be of order N-’12 

(8) 
to guarantee a sensible thermodynamic limit. An eq$valent alternative procedure 
would be to introduce a corresponding scaling for B = /3N-1’2, the cost function being 
obtained in the limit p’+ 03, but we shall follow FA in applying scalings to J so that 
H is thermodynamically extensive. The number of terms in the Hamiltonian which 
depend on J, is proportional to N 3  and thus a sensible thermodynamic limit is obtained 

J = N-1/2j 

by 

For this choice of J,, j, has to be taken to infinity (or at least large compared to j 
and T) to satisfy (4). Each u, integral in (6) now has the form 

1, = N-’j,. (9) 
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where Mj is the number of factors exp(2iuj) appearing in a term in the final product 
in ( 6 ) .  Analytic continuation of the exponent into the complex plane gives a saddle 
point at 

Thus, for fixed (large) .f, the method of steepest descent gives the dominant contribution 
to the integral from an area where zj is of order 1 / N  

2. = N-'?. I' (12) 

This justifies an expansion of exp(2iuj) in U, and the terms of leading order in 1 / N  
are the same as in FA. This shows that effects due to the sharp constraint (4) are of 
higher order in 1 / N  and the Hamiltonian ( 5 )  can be mapped onto the SK spin glass 
in the same way in which FA did the mapping for their model. 

Note, however, that the similarity between the model with fixed numbers of bonds 
at each vertex (which may well be different at different vertices) and the model where 
only the total number of bonds is given has only been shown for N-independent p .  
This analysis does not hold for a 'finite-valence' model where p is proportional to 1/ N 
because J ,  is no longer proportional to NP2. In that case differences between the two 
models can be expected. 
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